\qquad
Date \qquad

MONEY VS. AMOUNT PROBLEMS

1. Monica purchased red bricks at $\$ 2$ each and gray bricks for $\$ 3$ each. Write a system of equations that could be used to find the number of each type of brick Monica purchased if she spent $\$ 160$ on 60 bricks.

Variable: \qquad Equation: \qquad
Variable: \qquad Equation: \qquad
2. The Spanish Club purchased 34 tacos for $\$ 40$ to sell for a fundraiser. They purchased chicken tacos for $\$ 1$ each and beef tacos for $\$ 1.50$ each. Write two equations that would be used to find how many of each type of taco were sold.

Variable: \qquad

Variable: \qquad
3. Sarah enjoys cutting lawns and charges $\$ 20$ for each small lawn and $\$ 30$ for each large lawn she mows and trims. Sarah earned $\$ 140$ for mowing 6 yards. Write a system of equations that could be used to find how many of each type of lawn Sarah mowed.

Variable: \qquad
Variable: \qquad Equation: \qquad
4. Michael bought some tiger fish at $\$ 3$ each and some goldfish at $\$ 4$ each for his new aquarium. Michael bought a total of 12 fish and spent a total of $\$ 40$. Write a system of equation that could be used to find how many of each type of fish Michael purchased.

Variable: \qquad
Variable: \qquad

Equation: \qquad
Equation: \qquad
\qquad
\qquad

NUMBER PROBLEMS

5. One number is 12 less than three times another number. Their sum is 188 . Write two equations that would be used to find the two numbers.

Variable: \qquad
Variable: \qquad

Equation: \qquad
Equation: \qquad
6. Kasey is thinking of two numbers. The sum of the two numbers is -18 . Their difference is 38 . Write a system of equations that can be used to find the numbers.

Variable: \qquad Equation: \qquad
Variable: \qquad Equation: \qquad
7. Mary is twice as old as her nephew. The sum of their ages is 108. Write a system of equations that could be used to find their ages.

Variable: \qquad Equation: \qquad
Variable: \qquad Equation: \qquad
8. Two times the quantity of x minus y is 6 . Y is half of x. Write a system of equations that could be used to find the values of x and y.

Variable: \qquad Equation: \qquad
Variable: \qquad Equation: \qquad
\qquad
Date \qquad

COIN PROBLEMS

9. Manny has $\$ 4.90$ in dimes and quarters. He has 7 more dimes than quarters. Write two equations that would be used to find the number of dimes and quarters Manny has.

Variable: \qquad Equation: \qquad

Variable: \qquad Equation: \qquad
10. A cash register contains 53 coins worth $\$ 4.40$. They are all nickels and dimes. Write two equations that would be used to find how many nickels and dimes are in the cash register.

Variable: \qquad Equation: \qquad
Variable: \qquad Equation: \qquad
11. A parking meter contains 4 times as many nickels as quarters. The meter contains $\$ 4.05$ total. Write two equations that would be used to find how many nickels and quarters are in the parking meter.

Variable: \qquad
Variable: \qquad
\qquad
12. In his coin box, Brian has 12 fewer nickels than dimes. The value of his nickels and dimes is $\$ 2.40$. Write a system of equations that can be used to find how many nickels and dimes Brian has.

Variable: \qquad Equation: \qquad

Variable: \qquad Equation: \qquad
\qquad
Date \qquad

PERIMETER PROBLEMS

13. The length of a rectangular carpet is 8 feet more than twice the width. The perimeter is 46 feet. Write a system of equations that could be used to find the length and width.

Variable: \qquad Equation: \qquad

Variable: \qquad Equation: \qquad
14. The width of a rectangular swimming pool is 8 feet less than the length. The perimeter of the pool is 104 feet. Write two equations that would be used to find the length and width of the pool.

Variable: \qquad

Equation:

\qquad

Variable: \qquad Equation: \qquad
15. The perimeter of a rectangle is 78 cm . The length is 7 more than the width. Write two equations that would be used to find the length and width of the rectangle.

Variable: \qquad Equation: \qquad

Variable: \qquad Equation: \qquad
16. The length of a rectangular garden is twice the width. The perimeter of the garden is 96 feet. Write a system of equations that can be used to find the length and the width.

Variable: \qquad
Variable: \qquad

Equation: \qquad
Equation: \qquad

