Name \qquad Date \qquad Reporting Category 5 Notes (A.10.A)

To solve a quadratic equation means to find the roots.
*Remember roots are the same thing as x-intercepts, zeros, or solutions!
Ultimately, you have to factor the quadratic expression to find the solutions.
Factoring quadratics that are in standard form ($A x^{2}+B x+C=0$) can be broken up into specific steps.

Step 1: Make a product/sum table Example:
$2 x^{2}-11 x+5$

$P=1^{\text {st }}$ term $\times 3^{\text {rd }}$ term	$S=2^{\text {nd }}+$ term
$\frac{P=10}{5,2}$	$\frac{S=-11}{7}$
$-5,-2$	-7
10,1	11
$-10,-1$	-11

Step 2: Put selected factors in the sets. $(x-10)(x-1)$
Step 3: Put each factor over the $1^{\text {st }}$ coefficient. Simplify and reduce.

$$
\left(x-\frac{10)(x-1)}{2}=(x-5)\left(x-\frac{1}{2}\right)\right.
$$

Step 4: If the number reduces evenly you're done. If not, take the denominator of the fraction that doesn't become a whole number and swing it up to become the x coefficient. Factors: $(x-5)(2 x-1)$

Name \qquad
\qquad
Reporting Category 5 Notes (A.10.A)

Sometimes quadratics don't factor perfectly into whole numbers. When this happens, you must use the Quadratic Formula to solve for the roots.

Quadratics Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example: Find the solutions for " x " in the equation $3 x^{2}=2 x+1$.

- First, put the equation in standard form.

$$
\text { and simplify........ } x=\frac{2 \pm \sqrt{4-(-12)}}{6}
$$

$$
3 x^{2}-2 x-1=0
$$

- Second, state the values of $a, b, a n d c$.

$$
a=3, b=-2, c=-1
$$

$$
x=\frac{2 \pm \sqrt{16}}{6}
$$

- Then, substitute the values of $a, b, a n d ~ c$ into the formula:

$$
\begin{aligned}
& x=\frac{2+4}{6}=\frac{6}{6}=1 \\
& x=\frac{2-4}{6}=\frac{-2}{6}=-\frac{1}{3}
\end{aligned}
$$

The solutions to this quadratic equation are $(1,0)$ and $(-1 / 3,0)$

