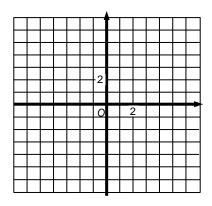
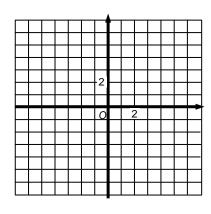
- 1. Write an equation for the line with a slope of $\frac{3}{2}$ that passes through (0, 2).
- 2. Write an equation for the line that passes through (2, 6) and (3, 6).

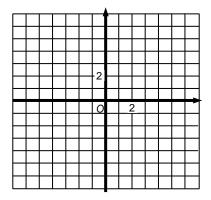
Write an equation that represents the data in the table.

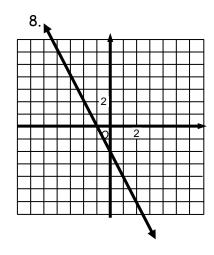

3.

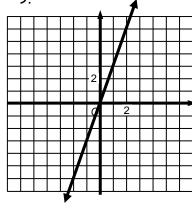
X	1	2	3	4	5
У	3	2	1	0	-1

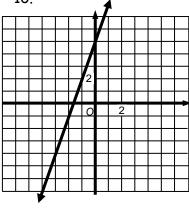

X	-2	0	2	4	6
У	9	5	1	-3	-7

Graph each equation.


5.
$$-3x + y = -4$$


6.
$$x - 4y = 0$$


7.
$$y = \frac{4}{5}x - 3$$


Write the equation of each line.

9.

10.

Equation _____

Equation _____

Equation _____

Slope - Day	7
Assignment	

Name			
Date	Period		

On the Talk for Less long-distance phone plan, the relationship between the number of minutes a call lasts, and the cost of the call, is linear. A 5-minute call costs \$1.25, and a 15-minute call costs \$2.25.

- 11. Write an equation for the relationship between the cost and the length of a call.
- 12. Find the slope and the y-intercept of the equation, and explain what this information means in the context of the problem.
- 13. How much will a 25-minute call cost?
- 14. How long can a customer talk for \$5.00?

Describe a situation involving a linear relationship whose graph has the following slope.

- 15. Positive Slope
- 16. Negative Slope
- 17. A Slope of 0