Name \qquad Date \qquad
Reporting Category 5 Notes (A.9.D. \& A.10.A)

Quadratic Functions are graphs in the shape of a parabola ("u" shape). Depending on the equation of a quadratics expression the graph can either open up or down.

The standard form for a quadratic equation is $\quad A x^{2}+B x+C=0$. Where $A, B, \& C$ are all numbers.

In the parent function of a quadratic: $y=x^{2}$, the $A=1$, and the $B \& C$ are equal to zero.

The parent function of the quadratic is shown at the right. We can identify many components of a quadratic graph by looking at it.

The vertex is the maximum or minimum point on the graph.
It will always be in the center of the "u".
A maximum means it is at the top of the " u ". A minimum means it is at the bottom of the " u ".

The line of symmetry is the line that divides the graph in half. The line of symmetry always goes through the vertex point and is written in the form of an equation $x=$ the x value at the vertex.

The roots are where the quadratic graph crosses or touches the x-axis. The roots are also called x-intercepts, zeros, or solutions. Generally in a quadratic there will be two roots. Sometimes though there is only one or even none.

Line of Symmetry $x=-1$

Vertex $(1,-5)$
Minimum point

Roots ($-3,0$)
and $(4,0)$

Name \qquad Date \qquad Reporting Category 5 Notes (A.9.D. \& A.10.A)

To solve a quadratic equation means to find the roots.
*Remember roots are the same thing as x-intercepts, zeros, or solutions!
Ultimately, you have to factor the quadratic expression to find the solutions.
Factoring quadratics that are in standard form ($A x^{2}+B x+C=0$) can be broken up into specific steps.

Step 1: Make a product/sum table Example:
$2 x^{2}-11 x+5$

$P=1^{\text {st }}$ term $\times 3^{\text {rd }}$ term	$S=2^{\text {nd }}+$ term
$\frac{P=10}{5,2}$	$\frac{S=-11}{7}$
$-5,-2$	-7
10,1	11
$-10,-1$	-11

Step 2: Put selected factors in the sets. $(x-10)(x-1)$
Step 3: Put each factor over the $1^{\text {st }}$ coefficient. Simplify and reduce.

$$
\left(x-\frac{10)(x-1)}{2}=(x-5)\left(x-\frac{1}{2}\right)\right.
$$

Step 4: If the number reduces evenly you're done. If not, take the denominator of the fraction that doesn't become a whole number and swing it up to become the x coefficient. Factors: $(x-5)(2 x-1)$

Name \qquad Date \qquad
Reporting Category 5 Notes (A.9.D. \& A.10.A)

Sometimes quadratics don't factor perfectly into whole numbers. When this happens, you must use the Quadratic Formula to solve for the roots.

Quadratics Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example: Find the solutions for " x " in the equation $3 x^{2}=2 x+1$.

- First, put the equation in standard form.

$$
\text { and simplify } \ldots \ldots \ldots \quad x=\frac{2 \pm \sqrt{4-(-12)}}{6}
$$

$$
3 x^{2}-2 x-1=0
$$

- Second, state the values of $a, b, a n d c$.

$$
a=3, b=-2, c=-1
$$

- Then, substitute the values of a, b, and c into

$$
x=\frac{2 \pm \sqrt{16}}{6}
$$ the formula:

$$
\begin{aligned}
& x=\frac{2+4}{6}=\frac{6}{6}=1 \\
& x=\frac{2-4}{6}=\frac{-2}{6}=-\frac{1}{3}
\end{aligned}
$$

The solutions to this quadratic equation are $(1,0)$ and $(-1 / 3,0)$

