\qquad
\qquad
Reporting Category 3 (A.6.C.) Notes

The slope-intercept form for a linear equation is $y=b+m x$. The coefficient of $x(m)$ and the constant (b) have a special role in graphing a linear function.

Let's first take a look at how the coefficient (m) can alter the graph.
The parent function $y=x$ is shown as the dotted line on the graph. The red line on the graph shows how the graph would change if we altered the equation to $y=2 x$.

The blue line on the graph shows how the graph would change if we altered the equation to $y=\frac{1}{2} x$.

If the m is greater than $1(m>1)$ then the slope becomes steeper.

If the m is between zero and $1(0<m<1)$ then the slope becomes less steep or shallow.

The m is not always positive. A negative m changes the graph as well. Let's look at how the graph changes if the m is a negative number.

The parent function $y=x$ is shown as the dotted line on the graph. The green line on the graph shows how the graph would change if we altered the equation to $y=-x$.

If the m is a negative number then the line is reflected.

Name \qquad Date \qquad

Reporting Category 3 (A.6.C.) Notes

The constant or the "b" can change the graph as well. Let's look a thow both a positive b and a negative b can alter the graph.

The parent function $y=x$ is shown as the dotted line on the graph.

The red line shows how the graph would change if we alter the equation to $y=x+3$.

The blue line shows how the graph would change if we alter the equation to $y=x-3$.

If the b is positive or greater than $O(b>0)$, the line will be shifted up.
If the b is negative or less than $O(b<0)$, the line will be shifted down.

Let's put it all together:
The " m " affects the steepness of the graph. It can become more steep ($m>1$) or less steep $(0<m<1)$. The " m " also makes the line reflect if the m is negative.

The "b" can make the graph shift up (b>0) or it can make the graph shift down ($b<0$).

