Quadratics - Day 3
Name \qquad
Notes
Date \qquad Per. \qquad
You can use the values in a table representing a quadratic function to find solutions to a quadratic equation.

- Identify the points in the table that have y-values of 0 .
- The x-values of those points are the solutions to the equation.

The table below models the function $f(x)=2 x^{2}-2 x-12$. Find solutions to the quadratic equation $2 x^{2}-2 x-12=0$.

x	y
-3	12
-2	0
-1	-8
0	-12
1	-12
2	-8
3	0
4	12

The roots of the function are the x-coordinates of the points on the graph where the y-coordinate is 0 . Look for rows in the table where $y=0$. Two points in the table have a y-coordinate of $0:(-2,0)$ and $(3,0)$. The 0 -coordinates of these points are -2 and 3 . The zeros of the function, or the roots of the equation, are -2 and 3 . Both -2 and 3 are solutions.

Name \qquad
Notes
Date \qquad Per. \qquad

Graph the quadratic function in y_{1} of your calculator. Then complete the table and sketch the graph of the function.

1. $f(x)=x^{2}$

x	y

Vertex \qquad Maximum or Minimum point? \qquad
Equation of the Line of Symmetry \qquad
x-intercepts (or roots) \qquad
Domain \qquad Range \qquad
2. $f(x)=-x^{2}+3 x-2$

x	y

Vertex \qquad Maximum or Minimum point? \qquad Equation of the Line of Symmetry \qquad x-intercepts (or roots) \qquad

Domain \qquad Range \qquad
3. $f(x)=x^{2}-9$

x	y

Vertex \qquad Maximum or Minimum point? \qquad Equation of the Line of Symmetry \qquad x-intercepts (or roots) \qquad

Domain \qquad Range \qquad

