Name \qquad
Notes
Date \qquad Per. \qquad

When given a quadratic function you can start by factoring to find the zeros.

Example 1: The first step to finding the roots of a quadratic function is to factor the quadratic. *Remember it must be equal to zero!
$y=x^{2}+3 x+2 \quad \Rightarrow \quad y=(x+1)(x+2)$
Once the quadratic is factored, the next step is to find the roots.
Roots are found when $y=0$. Therefore we must set the two binomials equal to 0 .
$(x+1)=0 \quad$ and $\quad(x+2)=0 \quad$ This allows us to find x when y is zero
$-1-1$
$x=-1$ and $\frac{-2-2}{x=-2} \longrightarrow \begin{aligned} & \text { (our } x \text {-intercepts). } \\ & \text { These are our two roots. }\end{aligned}$
We can write these roots as ordered pairs $(-1,0)$ and $(-2,0)$ or as a solution set $\{-2,-1\}$.

To find the vertex of a quadratic:
You can use the expression: $\frac{-b}{2 a}$ to find the x value of the vertex.
*Remember the equation must be in the standard form, $y=A x^{2}+B x+C$.

Example:

Find the vertex of the parabola $y=3 x^{2}+12 x-12$.
Here, $a=3$ and $b=12$. So, the x-coordinate of the vertex is: $\frac{-12}{2(3)}=\frac{-12}{6}=-2$

Substituting $(x=-2)$ in the original equation to get the y-coordinate, we get:

$$
\begin{aligned}
& y=3(-2)^{2}+12(-2)-12 \\
& y=-24
\end{aligned}
$$

So, the vertex of the parabola is at $(-2,-24)$.

Name \qquad
Notes
Date \qquad Per. \qquad

Find the solutions by factoring, sketch each parabola and identify the parts of the quadratic.

1. $x^{2}-5=4 x$

Solution Set: \qquad

Vertex \qquad Maximum or Minimum point? \qquad
Equation of the Line of Symmetry \qquad
2. $x^{2}-1=0$

Solution Set: \qquad

Vertex \qquad Maximum or Minimum point? \qquad
Equation of the Line of Symmetry \qquad
3. $x^{2}+6 x=-5$

Solution Set: \qquad

Vertex \qquad Maximum or Minimum point? \qquad
Equation of the Line of Symmetry \qquad

