Quadratics - Day 2	Name	
Notes	Date	_Per

When given a quadratic function you can start by factoring to find the zeros.

Example 1: The first step to finding the roots of a quadratic function is to <u>factor the quadratic</u>. *Remember it must be equal to zero!

 $y = x^2 + 3x + 2$ \rightarrow y = (x + 1) (x + 2)

Once the quadratic is factored, the next step is to find the roots. Roots are found when y = 0. Therefore we must set the two binomials equal to 0.

(x + 1) = 0 and (x + 2) = 0This allows us to find x when y is zero-1-2-2x = -1andx = -2These are our two roots.

We can write these roots as ordered pairs (-1, 0) and (-2, 0) or as a solution set {-2, -1}.

To find the vertex of a quadratic:

You can use the expression: $\frac{-b}{2a}$ to find the x value of the vertex.

*Remember the equation must be in the standard form, $y = Ax^2 + Bx + C$.

Example:

Find the vertex of the parabola $y = 3x^2 + 12x - 12$.

Here, a = 3 and b = 12. So, the x-coordinate of the vertex is: $\frac{-12}{2(3)} = \frac{-12}{6} = -2$

Substituting (x = -2) in the original equation to get the y-coordinate, we get:

So, the vertex of the parabola is at (-2, -24).

Quadratics - Day 2 Notes Name _____ Date _____ Per. _____

Find the solutions by factoring, sketch each parabola and identify the parts of the quadratic.

1. $x^2 - 5 = 4x$

Solution Set: _____

Vertex ______Maximum or Minimum point? _____

Equation of the Line of Symmetry _____

2. $x^2 - 1 = 0$

			,				
\square							
\square							
			2				
\square							
			0		2		
F			6		2		
					2		
					2		
					2		
				,	2		

Solution Set: _____

Vertex ______Maximum or Minimum point? _____

Equation of the Line of Symmetry _____

3. $x^2 + 6x = -5$

Solution Set: _____

Vertex ______Maximum or Minimum point? _____

Equation of the Line of Symmetry _____