Quadratics - Day 1
Name \qquad
Notes
Date \qquad Per. \qquad
Quadratic Functions are graphs in the shape of a parabola ("u" shape). Depending on the equation of a quadratics expression the graph can either open up or down.

The standard form for a quadratic equation is

$$
A x^{2}+B x+C=0
$$

Where $A, B, \& C$ are all numbers.

In the parent function of a quadratic: $y=x^{2}$, the $A=1$, and the $B \& C$ are equal to zero.

The parent function of the quadratic is shown at the right. We can identify many components of a quadratic graph by looking at it.

The vertex is the maximum or minimum point on the graph. It will always be in the center of the "u".

A maximum means it is at the top of the "u". A minimum means it is at the bottom of the "u".

The line of symmetry is the line that divides the graph in half. The line of symmetry always goes through the vertex point and is written in the form of an equation $x=$ the x value at the vertex.

The roots are where the quadratic graph crosses or touches the x-axis. The roots are also called x-intercepts, zeros, or solutions. Generally in a quadratic there will be two roots. Sometimes though there is only one or even none.

Quadratics - Day 1
Name \qquad
Notes
Date \qquad Per. \qquad
Identify the parts of each quadratic function. The graph of a quadratic function is called a parabola. Draw the line of symmetry for each quadratic function.
1.

Vertex \qquad Maximum or Minimum point? \qquad
Equation of the Line of Symmetry \qquad
x-intercepts (or roots) \qquad

Domain \qquad Range \qquad
2.

Vertex \qquad Maximum or Minimum point? \qquad
Equation of the Line of Symmetry \qquad x-intercepts (or roots) \qquad Domain \qquad Range \qquad
3.

Vertex \qquad Maximum or Minimum point? \qquad
Equation of the Line of Symmetry \qquad
x-intercepts (or roots) \qquad
Domain \qquad Range \qquad
4.

Vertex \qquad Maximum or Minimum point? \qquad
Equation of the Line of Symmetry \qquad
x-intercepts (or roots) \qquad
Domain \qquad Range \qquad

