\qquad

Functions

Functions are the foundation for algebra. A function is a relationship between two variables. In algebra we have learned how to identify functional relationships and describe the relationships given attributes of the function.

When writing your song - consider the following vocabulary and phrases.

Independent Variable/Dependent Variable
Types of Correlations \& Scatterplots (Positive, Negative, No Correlation)
Vertical Line Tes \dagger
In a functional relationship the x 's don't repeat
Domain \& Range
Function Notation - F(x)
Coordinate Point (x, y)
Multiple Representations (Point, Table, Map, Graph, Equation, Verbal Description)
\qquad

Linear Relations

In algebra 1 we have spent a lot of time discussing linear relationships and graphs. We learned how to graph and interpret slope and y-intercept given equations in the form $y=$ $m x+b$.

When writing your song - consider the following vocabulary and phrases.

Linear
Slope-Intercept Form $-y=m x+b$
Slope (m): (Rise over Run, Change in y over Change in $x, \frac{\Delta y}{\Delta x}$, rate of change, $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$)
Y-Intercept (b)
Constant Rate of Change
Point Slope Form: $y-y_{1}=m\left(x-x_{1}\right)$
Solving for $y=m x+b$ form
Standard Form: $A x+B y=C$
Parallel Lines/Perpendicular Lines
\qquad

Changes in Slope \& Y-Intercept

Every function begins with a parent function. All other equations are derived as alterations to the parent function. We have studied the parent function for linear equations and looked at what can happen as a result of changing the slope or the y-intercept.

When writing your song - consider the following vocabulary and phrases.

Parent Function for Linear Functions: $f(x)=x$
Slope-Intercept Form: $y=m x+b$
Transformations
Slope (m) changes the steepness of the line
Steeper/Less Steep
When the slope is negative the line is reflected
Reflection across the x-axis
Y-Intercept (b) changes the starting point of the line
Shift Up/Shift Down
\qquad

Inequalities

Unlike linear equations, an inequality can have a multitude of answers. When studying inequalities this year we looked at how to create a graph that accurately represents all the possible solutions.

When writing your song - consider the following vocabulary and phrases.

Greater Than/Less Than
Greater Than or Equal To/Less Than or Equal To
Shading - Above the Line/Below the Line
Solid Line/Dotted Line
Solving Linear Inequalities (When dividing by a negative the inequality sign flips)
How to identify Solutions to Inequalities
\qquad

Systems of Equations

A system of equations is two linear equations graphed on the same coordinate plane. The point of intersection is the solution to the system. When learning to set up and solve systems of equations, we studied various methods to solve.

When writing your song - consider the following vocabulary and phrases.

Identifying Variables in a System
Setting Up Systems Equations (Money vs. Amount Problems, Coin Problems, Sum or Difference Problems, Perimeter Problems)

Solving Systems by Graphing
Solving Systems by Substitution
Solving Systems by Elimination
Identifying the Solution to a System
No Solution (Parallel Lines)
All Real Numbers (Same Line)
\qquad

Polynomials \& Exponential Rules

Polynomials are expressions that contain multiple variables and exponents. During our unit on polynomials, we studied the many laws of exponents and ways to simplify polynomial expressions.

When writing your song - consider the following vocabulary and phrases.

Monomial

Binomial
Trinomial
Adding/Subtracting Polynomial Expressions (Ex: $2 x y^{3}+6 x y^{3}$)
Product of Powers (Ex: $x^{2} \cdot x^{3}$)
Quotient of Powers (Ex: $\frac{x^{6}}{x^{4}}$)
Power of a Power (Ex: $\left.\left(x^{2}\right)^{3}\right)$
Negative Powers (Ex: $\frac{x^{3}}{x^{-2}}$)
The Zero Power (Ex: x^{0})
Distribution of Powers (Ex: $\left.\left(x^{4} y^{3}\right)^{2}\right)$
Setting up and Solving Polynomials in Perimeter and Area Problems
\qquad

FOIL/Factoring

During our unit on polynomials we learned the ways to multiply out binomials using either the FOIL or box method. We also learned how to work backwards to factor, or divide out, trinomial expressions back into two binomials.

When writing your song - consider the following vocabulary and phrases.

Multiplying Monomial by a Binomial $\left\{E x: 2 x\left(x^{2}+5\right)\right\}$
Multiplying a Binomial by a Binomial $\{E x:(x+3)(4 x-5)\}$
FOIL (First - Outer - Inner - Last)
Distribution Property
Multiplying Exponents Rule
Greatest Common Factor (GCF)
Factoring Trinomials
Solving for x (Remember there should be two answers)
Difference of Squares
Leading Coefficient Rules (divide by the leading coefficient, reduce, and move to the front)

Area Word Problems
\qquad

Quadratics

Quadratic equations are parabola or "u" shaped functions. During our unit on quadratics we analyzed how to identify parts of the quadratic graph and find the solutions to a quadratic equation by factoring.

When writing your song - consider the following vocabulary and phrases.

Quadratic Parent Function: $F(x)=x^{2}$
Standard Form: $A x^{2}+B x+C=0$
Vertex Point
Line of Symmetry
Maximum/Minimum Point
Solutions/Roots/X-Intercepts/Zeros
Domain/Range of Quadratics
Transformations on the Graph
Changes in A (makes the graph wider or narrower, when A is negative the graph opens downward)

Changes in C (shifts the graph up or down)
Quadratic Formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

