Name	
Date _	Period

A function is a set of ordered pairs (x, y) in which each x-coordinate is paired with only one y-coordinate. In a list of ordered pairs belonging to a function, no x-coordinate is repeated.

You can use a table to represent a function. Suppose you read a book at a constant rate of 50 pages an hour.

Elapsed Time	1	2	3	4	5	6	
Pages Read	50	100	150	200	250	300	

The number of pages you read can be described in terms of the number of hours you read.

In a functional relationship, for any given input there is a unique output.

In a functional relationship, for any given input there is a unique output.

There are two ways to test a set of ordered pairs to see whether it is a function.

Examine the list of ordered pairs.

If a set of ordered pairs is a function, no x-coordinate in the set is repeated. No x-coordinate should be listed with two different y-coordinates.

Is the set of ordered pairs a function? {(0, 4), (-2, 2), (0, 0)}	Is the set of ordered pairs a function? {(5, -1), (-3, 4), (0, -1), (2, 7)}
• Two ordered pairs, (0, 4) and (0, 0), have the same x-coordinate. In a functional relationship, no x-coordinate should repeat.	 Two ordered pairs, (5, -1) and (0, -1) have different x-coordinates but the same coordinate for y. This does not prevent the set of ordered pairs from being a
This set of ordered pairs is not a function.	functional relationship.
	This set of ordered pairs is a function.

Introduction to Functions - Day 1 Notes

Name		
Date	Period	
-		

Examine a graph of the function.

Use a vertical line to determine whether two points have the same x-coordinate. If two points in the function lie on the same vertical line, then they have the same x-coordinate, and the set of ordered pairs is not a function.

Do the ordered pairs graphed below represent a function?

					_		
			1				
		~					
		2					
		0		2	2		
		-					
						-	
						7	

The ordered pairs (3, 4) and (3, -1) lie on a common vertical line.

They have the same x-coordinate, 3, but different y-coordinates, 4 and -1.

This graph does not represent a function because two points lie on the same vertical line.

In a function, the y-coordinate is described in terms of the x-coordinate. The value of the y-coordinate depends on the value of the x-coordinate.

Functional relationships can be represented in a variety of ways.

Method	Description	Example			
List	List the ordered pairs.	{(-3, -2), (-1, 2), (1, 6), (3, 10)}			
Table	Place the ordered pairs in a table.	x y -3 -2 -1 2 1 6 3 10			
Mapping	Draw a picture that shows how the ordered pairs are formed.	$ \begin{array}{c c} -3 \\ -1 \\ -2 \\ 1 \\ 6 \\ 3 \\ 10 \\ \end{array} $			

Name		
Date	Period _	

Verbal Description	Use words to describe the functional relationship.	The y-values for the set of points are 4 more than twice the corresponding x-values.
Equation	Write an equation that describes the y-coordinate in terms of the x-coordinate.	y = 2x + 4
Function Notation	Write a special type of equation that uses f(x) to represent y.	f(x) = 2x + 4
Graph	Graph the ordered pairs.	

To use <u>function notation</u> to describe a function, give the function a name, typically a letter such as f, g, or h. Then use an algebraic expression to describe the y-coordinate of an ordered pair.

Suppose f(x) = 2x + 5.

- This function is read as "f of x equals 2 times x plus 5."
- If you input x, the output will be 2x + 5.
- This means that the y-coordinate of an ordered pair is 2x + 5.

The function described by f(x) = 2x + 5 is the same as the function described by y = 2x + 5.