\qquad
Notes
Date \qquad Period \qquad

A function is a set of ordered pairs (x, y) in which each x-coordinate is paired with only one y-coordinate. In a list of ordered pairs belonging to a function, no x-coordinate is repeated.

You can use a table to represent a function. Suppose you read a book at a constant rate of 50 pages an hour.

Elapsed Time	1	2	3	4	5	6
Pages Read	50	100	150	200	250	300

The number of pages you read can be described in terms of the number of hours you read.
In a functional relationship, for any given input there is a unique output.

In a functional relationship, for any given input there is a unique output.

If you are given an x-value belonging to a function, you can find the corresponding y-value.

If you input 5 hours into the function above, the output will be 250 pages.

There are two ways to test a set of ordered pairs to see whether it is a function.

Examine the list of ordered pairs.

If a set of ordered pairs is a function, no x-coordinate in the set is repeated. No x-coordinate should be listed with two different y-coordinates.

Is the set of ordered pairs a function?

$$
\{(0,4),(-2,2),(0,0)\}
$$

- Two ordered pairs, $(0,4)$ and $(0,0)$, have the same x-coordinate. In a functional relationship, no x-coordinate should repeat.

This set of ordered pairs is not a function.

Is the set of ordered pairs a function?

$$
\{(5,-1),(-3,4),(0,-1),(2,7)\}
$$

- Two ordered pairs, $(5,-1)$ and $(0,-1)$ have different x-coordinates but the same coordinate for y. This does not prevent the set of ordered pairs from being a functional relationship.

This set of ordered pairs is a function.

Introduction to Functions - Day 1
Name \qquad
Notes
Date \qquad Period \qquad

Examine a graph of the function.

Use a vertical line to determine whether two points have the same x-coordinate. If two points in the function lie on the same vertical line, then they have the same x-coordinate, and the set of ordered pairs is not a function.

Do the ordered pairs graphed below represent a function?

The ordered pairs $(3,4)$ and $(3,-1)$ lie on a common vertical line.

They have the same x-coordinate, 3 , but different y-coordinates, 4 and -1 .

This graph does not represent a function because two points lie on the same vertical line.

In a function, the y-coordinate is described in terms of the x-coordinate. The value of the y-coordinate depends on the value of the x-coordinate.

Functional relationships can be represented in a variety of ways.

\qquad
Notes
Date \qquad Period \qquad

Verbal Description	Use words to describe the functional relationship.	The y-values for the set of points are 4 more than twice the corresponding x-values.
Equation	Write an equation that describes the y-coordinate in terms of the x-coordinate.	$y=2 x+4$
Function Notation	Write a special type of equation that uses $f(x)$ to represent y.	$f(x)=2 x+4$
Graph	Graph the ordered pairs.	

To use function notation to describe a function, give the function a name, typically a letter such as f, g, or h. Then use an algebraic expression to describe the y-coordinate of an ordered pair.

Suppose $f(x)=2 x+5$.

- This function is read as " f of x equals 2 times x plus 5."
- If you input x, the output will be $2 x+5$.
- This means that the y-coordinate of an ordered pair is $2 x+5$.

The function described by $f(x)=2 x+5$ is the same as the function described by $y=2 x+5$.

