Factoring - Day 1
Notes

Name
Period \qquad

Definition: In a multiplication expression, the quantities being multiplied are called the FACTORS.
A number or expression can be factored into lowest terms. This means taking the non-prime factors to the lowest number possible.

The GREATEST COMMON FACTOR (GCF) is the greatest number that is a factor of all the numbers.
Example 1: Find the GCF of $21 \& 15 . \begin{aligned} & 21=3 \cdot \\ & 15=3\end{aligned} \cdot \cdot \mathbf{3} .5$ is the biggest number that they have in COMMON therefore the GCF is 3 .
Example 2: Find the GCF of $w^{2} z^{4} \& u^{2} w^{4}$.

$$
\begin{aligned}
& w^{2} z^{4}=w \cdot w \cdot z \bullet z \bullet z \bullet z \\
& u^{2} w^{4}=u \bullet u \cdot w \cdot w \cdot w \bullet w
\end{aligned}
$$

The common terms are $w \bullet w=w^{2}$, therefore w^{2} is the GCF.

Example 3: $5 a+35 \quad$ GCF of $5 a$ and 35 is 5
When factoring polynomials, the first step is to find the GCF between the 2 terms.
Once you have the GCF, the GCF gets "taken out" of the expression and the factors that are "left" stay in parentheses as an expression.

$$
\begin{aligned}
& 5 \cdot \underline{a}=5 a \\
& 5 \cdot \underline{7}=35
\end{aligned}
$$

A sure way of knowing if your answer is correct is to use the distributive property.
$5(a+7)=5 a+35 \checkmark \quad$ **Factoring polynomials is just like doing the distributive property backwards!!

Factor out the Greatest Common Factor.

1. $2 x^{3}+4 x^{2}-6 x$
2. $4 x^{2} y^{2}+16 x y$
3. $6 x^{3}+3 x$
4. $4 a^{3} b-12 a^{2} b^{2}-8 a b^{3}$

Find the missing factor.
5. $y^{5}=(\square)\left(y^{3}\right)$
6. $c^{7}=(\square)\left(-c^{3}\right)$
7. $4 x^{3}-7 x^{2}=(\quad)(4 x-7)$
8. $10 x+30=(\square)(2 x+6)$

