\qquad

Reporting Category 2 Notes (A.2.B)

A function is a set of ordered pairs (x, y), such that no x-values are repeated. The domain and range of a function are sets that describe those ordered pairs.

	Definition	Example $\{(0,1),(2,6),(3,5)\}$
Domain	All the x-coordinates in the function's ordered pairs.	$\{0,2,3\}$
Range	All the y-coordinates in the function's ordered pairs.	$\{1,5,6\}$

- The domain is the set of all the values of the independent variable, the x-coordinate.
- The range is the set of all the values of the dependent variable, the y-coordinate.

The domain and range of algebraic functions are usually assumed to be the set of all real numbers. In some cases, however, the domain or range of a function may be a subset of the real numbers because certain numbers would not make sense in a real-life problem situation.

The number of shoes in n pairs of shoes can be expresses by the function $s=2 n$. Are there any values that would not be reasonable to include in the domain or range of this function?

- The domain of this function is the set of values you may choose for n, the independent variable. Would it be reasonable to let $n=-2$? No. The variable n represents a number of pairs of shoes, so it must be a nonnegative integer. The domain is the set of nonnegative integers, $\{0,1,2,3, \ldots\}$.
- The range of this function is the set of values you will obtain for the dependent variable, s, the number of shoes in n pairs of shoes. Is it possible to get 5 as a value for s ? No, 5 is not a reasonable value for the range of this function. Since 1 pair of shoes has 2 shoes, 2 pairs of shoes have 4 shoes, and so on, the range of this function is the set of multiples of 2 or $\{0,2,4,6, \ldots\}$.

